Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes.
نویسندگان
چکیده
The polychromatic and trophically polymorphic Midas cichlid fish species complex (Amphilophus cf. citrinellus) is an excellent model system for studying the mechanisms of speciation and patterns of phenotypic diversification in allopatry and in sympatry. Here, we first review research to date on the species complex and the geological history of its habitat. We analyse body shape variation from all currently described species in the complex, sampled from six crater lakes (maximally 1.2-23.9 kyr old) and both great lakes in Nicaragua. We find that Midas cichlid populations in each lake have their own characteristic body shape. In lakes with multiple sympatric species of Midas cichlid, each species has a distinct body shape. Across the species complex, most body shape change relates to body depth, head, snout and mouth shape and caudal peduncle length. There is independent parallel evolution of an elongate limnetic species in at least two crater lakes. Mitochondrial genetic diversity is higher in crater lakes with multiple species. Midas cichlid species richness increases with the size and age of the crater lakes, though no such relationship exists for the other syntopic fishes. We suggest that crater lake Midas cichlids follow the predicted pattern of an adaptive radiation, with early divergence of each crater lake colonization, followed by intralacustrine diversification and speciation by ecological adaptation and sexual selection.
منابع مشابه
Crater lake habitat predicts morphological diversity in adaptive radiations of cichlid fishes.
Adaptive radiations provide an excellent opportunity for studying the correlates and causes for the origin of biodiversity. In these radiations, species diversity may be influenced by either the ecological and physical environment, intrinsic lineage effects, or both. Disentangling the relative contributions of these factors in generating biodiversity remains a major challenge in understanding w...
متن کاملA Hybrid Genetic Linkage Map of Two Ecologically and Morphologically Divergent Midas Cichlid Fishes (Amphilophus spp.) Obtained by Massively Parallel DNA Sequencing (ddRADSeq)
Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp...
متن کاملParallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes.
Fundamental to understanding how biodiversity arises and adapts is whether evolution is predictable in the face of stochastic genetic and demographic factors. Here we show rapid parallel evolution across two closely related but geographically isolated radiations of Nicaraguan crater lake cichlid fishes. We find significant morphological, ecological and genetic differentiation between ecomorphs ...
متن کاملCrater lake colonization by neotropical cichlid fishes.
Volcanic crater lakes are isolated habitats that are particularly well suited to investigating ecological and evolutionary divergence and modes of speciation. However, the mode, frequency, and timing of colonization of crater lakes have been difficult to determine. We used a statistical comparative phylogeographic approach, based on a mitochondrialDNA dataset, to infer the colonization history ...
متن کاملGenomic signatures of divergent selection and speciation patterns in a 'natural experiment', the young parallel radiations of Nicaraguan crater lake cichlid fishes.
Divergent selection is the main driving force in sympatric ecological speciation and may also play a strong role in divergence between allopatric populations. Characterizing the genome-wide impact of divergent selection often constitutes a first step in unravelling the genetic bases underlying adaptation and ecological speciation. The Midas cichlid fish (Amphilophus citrinellus) species complex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 365 1547 شماره
صفحات -
تاریخ انتشار 2010